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Disclaimer

I These notes have not been proof read for signs, factors 1
2 , π,etc.

I The content is based on the work of many people. I apologize for not
quoting them appropriately. Un updated version will contain proper
references.

I The author has not contributed to this subject. (But errors in these
notes are of course his responsibility.)

I I would like to take this opportunity to thank Claudio Bunster and Marc
Henneaux from whom I have learned everything I know in this subject.
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Contents

1. Hamiltonian Formalism for gauge theories.
I Examples.
I We shall not discuss the Dirac algorithm!

2. Boundary terms, boundary conditions. Asymptotic symmetries, charges.

I The asymptotic transmutation of gauge symmetries into Noether global
symmetries

3. The magic of the Cardy formula. The central charge and black hole
entropy.

I Asymptotic centrally extended Virasoro algebra
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The Hamiltonian formulation of mechanics

I [p, q] =

∫
dt
[
pi q̇

i − H(p, q)
] [

q̇i = ∂H
∂pi

= [qi ,H]

ṗi = − ∂H
∂qi = [pi ,H]

]

has an interesting and powerful structure:

1. Symplectic geometry, Hamilton-Jacobi theory,...

2. The first (general) quantization method

3. The Energy E = H(p, q) functional is built-in in the formalism.

4. Gauge theories have a clear structure in Hamiltonian form: number of
degrees of freedom; splitting between dynamical and non-dynamical
fields; conserved charges;...
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Noether theorem in one slide: Let δqi (t), δpj(t) be small functions. Given
q(t) we build a new function q′i (t) = qi (t) + δqi (t).

q’(t)

q(t)

t

dq(t)

q’(t) = q(t) + dq(t) 

δq is a symmetry if, for all q(t),

δI [q] = I [q′]− I [q]

=

∫
dt

dB

dt

for some local B(q, p). On the other
hand, the on-shell variation is always
a boundary term:

δI [q] =

∫
dt

d(piδqi )

dt

Subtracting both variations we derive the Noether conservation law:

d

dt
(B − piδqi ) = 0 ⇒ εQ ≡ B − piδqi = conserved
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The converse theorem is also true. Let Q(p, q) be a conserve charge, i.e., a
function on phase space that commutes with the Hamiltonian,

[Q,H] = 0. (Poisson brackets)

Then, the following transformations Q are a symmetry of the action:

δqi = [qi ,Q] =
∂Q

∂pi

δpi = [pi ,Q] = −∂Q

∂qi

Proof: First, for any function A(q, p) of the canonical variables it follows:
δA = ∂A

∂qi δqi + ∂A
∂pi
δpi = [A,Q]. In particular the Hamiltonian is invariant,

δH = [H,Q] = 0.

The variation of the Kinetic term:

δ(pi q̇
i ) = δpi q̇

i − ṗiδqi +
d

dt
(piδqi ) = −∂Q

∂qi
q̇i − ṗi

∂Q

∂pi
+

d

dt
(piδqi )

= −dQ

dt
+

d

dt
(piδqi )
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Noether Symmetries

dQ(p, q)

dt
= 0 ⇔ δqi = [qi ,Q]

δpi = [pi ,Q]

Gauge Symmetries

φ(q, p) = 0 ⇔ δqi = [qi , φ]
δpi = [pi , φ]

We shall study this structure for gauge theories. In particular how, in field
theory, gauge symmetries get transmuted into Noether symmetries
asymptotically.
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Before proceeding... A note on constraints generating symmetries: It may
seem strange that a zero quantity can generate a non-zero transformation.

A free relativistic particle satisfies the constraint:

φ = pµpµ + m2 = 0

The coordinates and momenta have canonical poisson brakets:

[Xµ, pν ] = δµν .

Then

δXµ = [Xµ, pαpα + m2]

= 2pµ 6= 0

So, the constraint could be zero and yet its Poisson brackets different from
zero.
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Overview of these Lecture. The oldest and best well-known gauge theory is
Maxwell electrodynamics. Let us walk through its gauge symmetries,
constraints, Lagrange multipliers and conserved charges.

Maxwell theory is gauge invariant (Fµν = ∂µAν − ∂νAµ):

I [A] = −1

4

∫
FµνFµν , δAµ = ∂µε(x)

 The parameter ε(x) is
an arbitrary function of

space and time


What is the impact of the gauge symmetry on the dynamics of this field?

Let us explore Maxwell theory in Hamiltonian form:

Foliate spacetime into space hypersurfaces with local coordinates x i , and
x0 = t:

Aµ = (A0,Ai ) ⇒ δA0 = ε̇, δAi = ∂iε
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Now expand the action,

I [A0,Ai ] = −1

4

∫
dt

∫
d3x

[
2F 0iF0i + F ijFij

]
=

∫
dt

∫
d3x

[
1

2
Ȧi Ȧi − Ȧi∂iA0 +

1

2
∂iA0∂

iA0 −
1

4
F ijFij

]
A0 enters with no-derivatives. We do not introduce a momenta for it.

pi =
∂L

∂Ȧi
= Ȧi − ∂iA0 = Ei ⇒ Ȧi = Ei + ∂iA0

The Hamiltonian (density) is:

H(E ,A) = Ei Ȧ
i − L

=
1

2
EiE

i + F ijFij − A0∂iE
i

=
1

2
(~E 2 + ~B2)− A0∇ · ~E

where Bi = εijkF jk .
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The Hamiltonian action becomes

I [Ai ,E
j ,A0] =

∫
dt

∫
d3x

E i Ȧi −
1

2
(~E 2 + ~B2)︸ ︷︷ ︸

Hamiltonian6=0

+A0∇ · ~E


I The energy density of an electromagnetic field ~E , ~B is

ρ =
1

2
(~E 2 + ~B2)

I A0 is a Lagrange multiplier. Its variation implies the constraint
∇ · ~E = 0 (Gauss law in vacuum), but gives no information for its time
evolution. A0(x , t) is not determined by any equation.

I This theory seems to be incomplete. One of its functions is not
determined by the field equations.
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Let us look at the Hamiltonian equations of motion. Varying with respect to
Ai and E i we obtain two first order equations:

~̇A = ~E +∇A0

~̇E = ∇× ~B

The arbitrariness, ∇A0, shows up in the evolution of ~A, in the form of a
gauge transformation:

~A(t0 + δt) = ~A(t0) + ~Eδt +∇(δtA0)︸ ︷︷ ︸
gauge

Given initial conditions ~A(t0), the field value at t0 + δt is determined up a
gauge transformation with a parameter δt A0. The evolution tell us that ~A
and ~A +∇λ must represent the same physical situation.

Of course we knew this already for electrodynamics. But there are cases
where the gauge symmetry is not that obvious/well-known.
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Let us look at the variation of the action more closely.

δI =

∫
dt

∫
d3x

[
δ~E · (~̇A− ~E ) + A0∇ · δ~E

]
(E r ' Q

r2 + d
r3 + · · · )

=

∫
dt

∫
d3x

δ~E · (~̇A− ~E +∇A0)︸ ︷︷ ︸
equation of motion

+

∫
dt

∫
r→∞

dΩ r 2 δE r A0

δI = 0 implies the equation of motion provided the boundary term is zero.

4πδQ

∫
dtA0 :


A0 ∼ rn (n > 0) badyl defined theory
A0 ∼ 1

rn (n > 0) boundary term is zero X

A0 ∼ 1
“critical” behavior
Gauge ⇒ Noether

The asymptotic allowed values for A0 are (Regge-Teitelboim classification)

A0 ' α0︸︷︷︸
Noether

+
α1

r
+
α2

r 2
+ · · ·︸ ︷︷ ︸

pure gauge
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In these Lectures we shall discuss gauge theories and Hamiltonian form.

I The number of degrees of freedom

I How does the Hilbert space behave under gauge transformations?

I Does Noether theorem apply to gauge symmetries?

I How do we define energy in general relativity?

I Is electric charge conservation a Noether conservation law?
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Important gauge theories are

1. Yang-Mills theories (including QED)

IYM [Aa
µ] = −1

4

∫
Tr(FµνFµν), δAa

µ(x) = Dµλ
a(x)

2. Einstein Gravity (and its generalizations, f (R) gravity, Gauss-Bonnet,
Chern-Simons...)

IGR [gµν ] =

∫ √
g(R − 2Λ), δgµν(x) = ξαgµν,α + ξα,µgαν + ξα,νgµα

3. The string worldsheet action

I [Xµ, hσρ] =

∫ √
hhσρ∂σXµ∂ρX νηµν , δXµ = εσ∂σXµ
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Examples of Lagrangians with a gauge symmetry in particle mechanics are:

1. The parameterized non-relativistic point particle (will take us to
Schroedinger equation),

I [q(τ), t(τ)] =

∫ (
1

2ṫ
q̇2 − ṫV (q)

)
dt

2. The relativistic point particle (will take us to Klein-Gordon equation)

I [xµ] = −m

∫ √
ηµν

dxµ

dτ

dxν

dτ
dτ
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One-to-one correspondence between gauge symmetries and constraints:

QED : I [Aµ] = −1

4

∫
d4FµνFµν , (δAµ = ∂µΛ)

=

∫ [
E i Ȧi −

1

8π
(~E 2 + ~B2) + A0∇ · ~E

]

Yang-Mills : I [Aa
µ] = −1

4

∫
TrFµν

a F a
µν , (δAa

µ = Dλa)

=

∫ [
E i

aȦa
i −

1

8π
(~E 2 + ~B2) + Aa

0∇ · ~Ea

]

Gravity : I [g ] =

∫ √
gR , (δgµν = Lξgµν)

=

∫ [
πij ġij − NH⊥ − N iHi

]
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General structure of a gauge theory in Hamiltonian form:

I [pi , q
j , λα] =

∫
dt
[
pi q̇

i − H0(p, q)− λαφα(p, q)
] (

[pi , q
j ] = δj i

)
The λα appear linearly and their equations of motion are constraints

φα(p, q) = 0.

The theory will have a gauge symmetry if the constraints can be zero at all
times,

φ̇α =
∂φα
∂qi

q̇i +
∂φα
∂pi

ṗi = [φα,H0 + λβφβ] = 0.

This condition can be true, for all λβ(t), if and only if, there exists functions
f αβγ and Cα

β such that,

[H0, φα] = Cβ
αφβ

[φα, φβ] = f γαβφγ

The constraints φα are said to satisfy a “a first class algebra”.
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Example:

Yang-Mills theory for a Lie algebra G with structure constants f a
bc .

Aµ = Aa
µJa, [Ja, Jb] = f c

abJc

The Hamiltonian action is

IYM [Aa
µ] =

∫ [
E i

aȦa
i −

1

2
(~E 2 + ~B2) + Aa

0 DiE
i
a

]
The constraints are:

φa = DiE
i
a

= ∂iE
i
a + f a

bcAa iEb
i

and satisfy
[φb(t, x), φc(t, x ′)] = f a

bcφa(t, x)δ3(x , x ′).
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General proof of gauge invariance.

Consider a Hamiltonian action of the form,

I [pi , q
j , λα] =

∫
dt
[
pi q̇

i − H0(p, q)− λαφα(p, q)
]
.

If the constraints are first class, then the following transformation is a gauge
symmetry of the action,

δqi (t) = [qi , φα]εα(t)

δpi (t) = [pi , φα]εα(t)

δλα(t) = −ε̇α(t)− Cα
βε
β(t)− f αβγλ

βεγ(t)

where εα(t) is a fully arbitrary function of time.

I In QED, the Lagrange multiplier is A0. Recall that δAµ = ∂µε thus
δA0 = ε̇, as expected. This is an Abelian theory with Cα

β = 0 = f αβγ .
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Proof: For any function A(p, q) of the canonical variables it follows,
δA(qi , pi ) = ∂A

∂pi
δpi + ∂A

∂qi δqi = [A, φα]εα. In particular,

δH0 = [H0, φα]εα = Cβ
αφβ ε

α

δφγ = [φγ , φα]εα = f βγαφβ ε
α

The variation of the kinetic term is

δ(pi q̇
i ) = δpi q̇

i − ṗiδqi

= [pi , φα]εα q̇i − ṗi [q
i , φα]εα

= εα
(
∂φα
∂qi

q̇i +
∂φα
∂pi

ṗi

)
= εα φ̇α

= −ε̇α φα

So, the variations of H0, φα and pi q̇
i give terms proportional to the

constraints.
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Putting all together, the variation of the full action becomes:

δI =

∫
δ(pi q̇

i )− δH0 − λαδφα − δλαφα

= −
∫ (

ε̇α + Cα
βε
β + f αγβλ

γεβ + δλα
)
φα.

We can choose δλα to cancel everything making the action invariant.

= 0

Observe the tight relationship between constraints, Lagrange multipliers and
gauge symmetries.

If λα was fixed⇒
{

no variation with respect to λα, no constraint
δλα = 0, no gauge symmetry
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Comment:

Is the scalar field action

I [X ] =
1

2

∫ √
hhµν∂µX∂νX , ⇒ 1√

h
∂µ

(√
hhµν∂νX

)
= 0

on a curved, but fixed background hµν , gauge invariant? No. There are no
constraints, no Lagrange multipliers. No gauge symmetry.

On the contrary, the same action with a dynamical metric (string worldsheet
action)

I [X , hµν ] =
1

2

∫ √
hhµν∂µX∂νX ⇒


1√
h
∂µ

(√
hhµν∂νX

)
= 0

∂µX∂νX − 1
2 hµνhαβ∂αX∂βX = 0

� (Virasoro constraints)

is gauge invariant. Varying hµν yields constraints, and h0µ are the Lagrange
multipliers.
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Gauge theories and time evolution. The equation of motion for a gauge
theory are

ṗi = [pi ,H0] + [pi , φα]λα

q̇i = [qi ,H0] + [qi , φα]λα

φα = 0

We observe that the time evolution includes a gauge transformation with
parameter λα. Given an initial condition (must satisfy φα = 0) the
equations of motion have many solutions!

We either throw away this theory (because its time evolution is not unique)
or come up with a clever interpretation:

Only combinations that do not see λα are physical. Different
values for λα must be unobservable.

I The electric (~E ) and magnetic (~B) fields (Fµν) in QED.

I Curvature invariants, gµνRµν , RµνRµν , ... in gravity.

I Wilson loops Pe
∮

γ A in Yang-Mills theory.
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Review of first lecture:

A symmetry (Noether or Gauge, Lagrangian or Hamiltonian) is a small
function δqi that satisfies the following property. For all qi (t) (solutions and
not solutions) we build new functions q′i (t) = qi (t) + δqi (t).

q’(t)

q(t)

t

dq(t)

q’(t) = q(t) + dq(t) δq is a symmetry if, for
all q(t),

δI [q] = I [q′]− I [q]

=

∫
dt

dB

dt

This is a property of δqi .
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Noether Symmetries

dQa(p, q)

dt
= [Qa,H] = 0 ⇔ δqi = [qi ,Qa]ρa

δpi = [pi ,Qa]ρa

with constant parameters ρa.

Gauge Symmetries

φ(q, p) = 0 ⇔ δqi = [qi , φα]εα(t)
δpi = [pi , φα]εα(t)

with arbitrary time dependent parameters εα(t).
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A gauge theory can also have Noether symmetries:

I [A] = −1

4

∫
FµνFµν


gauge : δAµ = ∂µε(xν)

Lorentz : δAµ = ρνµAν , ρµν = −ρνµ
Translations : δAµ = ρν∂νAµ

Exercise: The (classical) global group of QED (and Yang-Mills) is much
larger,

δAµ = Fµνρ
ν(x), (ρµ,ν + ρν,µ =

1

2
ρσσηµν) (1)

1. Prove that (1) is a symmetry of the Maxwell action

2. Prove that (1) contains Lorentz, Translations, but also Dilatations, and
Special Conformal Transformations (last two broken in QM)

3. Compute the translational Noether current (ρµ = aµ)

Jµ =

(
FµαFνα −

1

4
FαβFαβδ

µ
ν

)
︸ ︷︷ ︸

Tµ
ν

aν , Tµν :

{
Symmetric
Gauge invariant

Max Bañados PUC-Chile Hamiltonian Formalism, Regge-Teitelboim charges and some AdS/CFT applications



4. Why does T 0
0 represent energy density? Noether point of view.

I For any conserved current Jµ ( ∂µJµ = 0) the following quantity is
conserved,

Q =

∫
d3x J0,

dQ

dt
= 0.

I The conserved current due to translations aµ is proportional to the
energy-momentum tensor:

Jµ
a = T µ

νaµ

I The current associated to time translations is then

Jµ
a0 = T µ

0.

I The conserved quantity, that we call energy,

E =

∫
d3xT 0

0 =
1

2

∫
d3x(~E 2 + ~B2)

coincides with the Hamiltonian itself. Check the last equality for QED.
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F(p,q)=0

How many independent initial

conditions does a gauge theory have?

Gauge theories and

degrees of freedom

Gauge orbits

I 2N {pi , q
i}’s satisfying first order equations.“2N initial conditions.”

I However, these initial conditions must satisfy g constraints
φα(p, q) = 0. We are left with 2N − g independent initial conditions

I Furthermore, two initial conditions related by a gauge transformations
are the same. There are g gauge transformations. Thus each gauge
symmetry kills two initial conditions.
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Number of degrees of freedom ≡ independent initial conditions

2

=
2N − g − g

2
= N − g .

Examples:

I 4d Gravity: gij = 6 functions - 4 symmetries = 2

I QED : Ai = 3 functions - 1 symmetry = 2

I d-dimensional Gravity: gij = (d−1)d
2 functions - d symmetries = d(d−3)

2 .

I d-dimensional Yang-Mills: Aa
i = (d − 1)N fields - N symmetries =

N(d − 2)
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Do gauge symmetries have a Noether conserved charge?

Well, yes, but is it zero. Applying Noether theorem to the gauge symmetry
yields

Q = φα = 0 (2)
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“Old” Dirac quantization condition:

Let us quantize our theory and now qi and pj are beautiful operators acting
on a Hilbert space. What is the role of the constraints

φ̂α = φα(q̂, p̂) ?

An example. In particle quantum mechanics, rotations are generated by
~L = ~r × ~p. A rotated state is δ|Ψ〉 = i~α · ~L|Ψ〉

In a gauge theory, the symmetry is generated by φ̂α and the “rotated” state
will be

δ|Ψ〉 = εαφ̂α|Ψ〉

But we have made the assumption that gauge transformations do not affect
observables. Physical states must be invariant under gauge transformations.
The wave function must be invariant:

φα|Ψ〉 = 0
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Examples of Dirac quantization: Free relativistic particle:

I [Xµ(τ)] = −m

∫
dτ

√
dXµ

dτ

dX ν

dτ
ηµν

[
Invariant under
τ → τ ′ = f (τ)

]
pµ =

∂L

∂Ẋµ
= −m

Ẋµ√
ẊµẊ νηµν

and it follows directly that

pµpµ + m2 = 0,

The Hamiltonian action is:

I [X , p, λ] =

∫
dτ
[
pµẊµ + λ(p2 + m2)

]
We now quantize p̂µ = i ∂

∂Xµ and Dirac condition becomes:

(−�+ m2)ψ = 0, Kein-Gordon equation
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Non-relativistic particle (time t(τ) as a canonical variable)

=

∫
dt

(
m

2

(
d~r

dt

)2

− V (~r)

) [
Replace

dt = dt
dτ dτ ≡ ṫ dτ

]

I [~r(τ), t(τ)] =

∫
dτ

(
m

2

~̇r 2

ṫ
− ṫV (~r)

)
,

[
Invariant under
τ → τ ′ = f (τ)

]

~p = ∂L
∂~̇r

= m~̇r
ṫ
,

pt = ∂L
∂ ṫ

= −m
2
~̇r2

ṫ2 − V (~r).

}
pt +

1

2m
~p2 + V (~r) = 0

We quantize

pt = −i
∂

∂t
, ~p = i∇

and the Dirac condition becomes:

i
∂Ψ

∂t
=

(
− 1

2m
∇2 + V

)
Ψ, Schroedinger equation
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The string worldsheet action. This is a field equation with infinite number of
degree of freedom. It requires a detailed analysis:

I [X , hµν ] =
1

2

∫ √
hhµν∂µX∂νX ⇒


1√
h
∂µ

(√
hhµν∂νX

)
= 0

∂µX∂νX − 1
2 hµνhαβ∂αX∂βX = 0

� (Virasoro constraints)

: ∂µX∂νX − 1

2
hµνhαβ∂αX∂βX : ⇒ L̂n,

ˆ̄Ln

Dirac “improved condition” becomes

Ln|Ψ〉 = 0, n > 0
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Yet another class of symmetry: Trivial symmetries. Let us denote all
canonical coordinates qi , pj ≡ za where a = 1, 2, ..., 2N. The action is I [za].

Let wab(z) = −wba(z) an arbitrary z−dependent antisymmetric tensor.
The following transformation is a symmetry of the action:

δza = wab δI [z ]

δzb
, ⇒ δI =

δI [z ]

δza
wab δI [z ]

δzb
= 0.

Of course these transformations –that exists for any action– cannot be
interesting! They have neither conserved charges nor constraints. The true
set of symmetries of an action is “the quotient space of all symmetries
divided by the set of trivial symmetries”.

Note that these transformations are proportional to the equations of motion,

δza = 0 (on − shell)

The converse is also true. If δza ≈ 0, then it is trivial.
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Examples of trivial symmetries.

Three dimensional Gravity in vielbein formalism:

I [w , e] =

∫
εabcRab ∧ ec (=

∫ √
gR)

The equations of motion are

Rab = 0, D ∧ ea = 0

This action is invariant under the following gauge symmetries

1. Lorentz Rotations: δw ea
µ = εabeb, δwab = −Dεab

2. Translations: δλea
µ = Dµλ

a, δwab = 0 (D ∧ Rab = 0)

3. Diffeomorphisms: δξe
a = ξαea

µ,α + ξα,µea
α.

A new symmetry for gravity...? No. 3 can be expressed in terms of 1 and 2,
plus a trivial term

ξαea
µ,α + ξα,µea

α = Dµ(ea
νξ
ν) + ξνwa

bνeb
µ + (D ∧ ea)[µν]ξ

ν
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Topological Chern-Simons theories, gauge transformations, and
diffeomorphisms. Let a gauge field

A = Aa
µdxµ

and build the topological functionals (metric independent):

I3[A] =

∫
Tr(AdA +

2

3
AAA)

I5[A] =

∫
Tr(AdAdA +

2

3
AAAdA +

1

5
AAAAA)

I7[A] = ...

These theories are gauge and diff invariant:

δAa
µ = Dµλ

a, δAa
µ = ξν∂νAµ + ξν,µAa

ν

I In three dimensions, diffs are contained in the gauge group.

I In higher dimensions (F 6= 0) “spatial” diffs ξi are independent, while
“temporal” ξ0 diffs are contained in the gauge group.
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More on topological diff invariance. An application to Horava gravity.

Consider a theory of the form:

I [p, q, λ] =

∫
pi q̇

i − λαφα(p, q)

If the constraints are first class [φα, φβ] = f γαβφγ , then we know it has a
gauge symmetry.

This action is also invariant under time reparameterizations (because
H0 = 0)

δqi = η(t)q̇i

δpi = η(t)ṗi

δλα = (ηλα).
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Proof:

δqi = η(t)q̇i

δpi = η(t)ṗi

δλα = (ηλα).

We first compute the variation of the constraint:

δφα =
∂φα
∂qi

q̇iη(t) +
∂φα
∂pi

ṗiη(t)

= φ̇αη(t)

and the variation of the full action is:

δI =

∫
δpi q̇

i − ṗiδqi − δλαφα − λαδφα

=

∫
ηṗi q̇

i − ṗiηq̇i − (ηλα).φα − λαηφ̇α

=

∫
− d

dt
(ηλαφα) X
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Is this symmetry new? Not really.

δqi = η(t)q̇i

δpi = η(t)ṗi

δλα = (ηλα).

δqi = [qi , φα]εα

δpi = [pi , φα]εα

δλα = ε̇α + f αβγλ
βεγ

I The left transformations are contained in the right transformations
when εα = ηλα, plus the use of the equations of motion. They are
related by a trivial symmetry.

I What happens if the constraints are second class?

[φα, φβ] = Cαβ, det(Cαβ) 6= 0

The right symmetry ceases to exist. But the left symmetry still exists.

I However, this symmetry is now trivial: 0 = φ̇α = [φα, φβ]λβ = Cαβλ
β

implies λα = 0. It follows q̇i = ṗi = 0 and the transformations are zero
on-shell, hence trivial.

I Horava has modified the Hamiltonian constraint to make GR
renormalizable. However, HHorava is second class. Hence
diffeomorphisms are trivial, not relevant.
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General Relativity in Hamiltonian form: Let M a manifold with local
coordinates xµ = (t, x i ). t is timelike, x i are spacelike. Any metric gµν(x)
can be decomposed in the form

ds2 = −N2dt2 + gij(dx i + N idt)(dx j + N jdt)

where N(t, x),N i (t, x) are functions replacing g0µ. The Einstein-Hilbert
Lagrangian Lagrangian action can be written as

∫
d4x

√
(4)g (4)R =

∫
dt N

∫
d3x

√
|gij |

K ijKij − K 2︸ ︷︷ ︸
Kinetic term

+ R(gij)︸ ︷︷ ︸
Interaction

+ bt

Kij ≡
1

2N
(−ġij + Ni/j + Nj/i )

I This Lagrangian (called ADM) is quadratic in ġij .

I Does not contain time derivatives of N,N i (analogous to A0 in QED).

I We shall do a Lagrange transformation with respect to ġij .
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Define momenta for gij in the usual way:

πij =
∂L

∂ġij
= −√g(Kij − gijK )

This equation can be inverted to express ġij in terms of πij . The
Hamiltonian becomes a linear combination

H = πij ġij − L

= NH+ N iHi ,

where

H(π, g) =
1
√

g
(πijπij −

1

2
π2)−√gR (3)

Hi (π, g) = −2πj
i/j (4)

are functions of πij , gij .
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The Hamiltonian action of GR has the structure of a gauge theory:

I [πij , gij ,N,N
i ] =

∫
dtd3x

πij ġij − (NH+ N iHi )︸ ︷︷ ︸
Hamiltonian


Variation with respect to N,N i give rise to the constraints H = 0, Hi = 0;
They form a closed algebra (hence a gauge symmetry exists)

[H(x),H(y)] = g ij(Hi (x) +Hi (y))∂jδ
3(x , y)

[H(x),Hi (y)] = ∂i (H(x)δ3(x , y))
[Hi (x),Hj(y)] = (Hj(x) +Hi (y))∂jδ

3(x , y)

the dynamical equations of motion are:

ġij(x) = δH0

δπij (x)
,

π̇ij(x) = − δH0
δgij (x)

, H0 =

∫
d3x [NH+ N iHi ]

Hence, as in any field theory we need to compute functional derivatives.
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A quick reminder of a functional derivative:

F [Φ] =
1

2

∫
d3x∇Φ(x) · ∇Φ(x)

then

δF [Φ] =

∫
d3x∇Φ · ∇δΦ

= −
∫

d3x∇2Φ δΦ +

∫
d~S · ∇Φ δΦ︸ ︷︷ ︸

boundary term

If the boundary term is zero, then the functional derivative is well-defined
and equal to:

δF [Φ]

δΦ(x)
= −∇2Φ.

The lesson here is that functional derivatives are not automatically
well-defined. The boundary term must vanish.
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The variation of the GR Hamiltonian functional has the following expression:

δH0 =

∫
d3x

(
Aijδπ

ij + B ijδgij

)
︸ ︷︷ ︸

volume pieces X

+

+

∫
dSl

[
G ijkl(Nδgij ;k − N,kδgij) + 2Niδπ

il + (2N iπkl − N iπik)δgjk

]
︸ ︷︷ ︸

boundary term ≡ δB

I Recall that N,N i are arbitrary. So generically δB 6= 0

I The action does not have an extremum...

I The idea is to “pass B to the other side” and build a new Hamiltonian
with well-defined variations,

H ≡ H0 − B, δH =

∫
d3x

(
Aijδπ

ij + B ijδgij

)
I This trick preserves the equations of motion ġij = Aij , π̇

ij = −B ij but,

I It changes the interpretation of those diffeomorphisms with B 6= 0.
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According to our discussion so far:

“Gauge transformations do not change the physical state”
They are generated by constraints φα(p, q) = 0, and

leave physical states invariant: φα(p̂, q̂)|Φ〉 = 0.

However, some diffeomorphisms with particular asymptotic values of N,N i

are not generated by constraints:

H[N] =

∫
d3x(NH+ N iHi ) − B[N]

= 0 − B[N]

We conclude:

All gauge transformations are equal
but some are more equal than others
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“Gauge Farm”

Coordinate transformations in General Relativity are generated by

H[N] =

∫
d3x(NH+ N iHi )︸ ︷︷ ︸

≈0

−B[N]

There are three classes of coordinate transformations

1. B[N] = 0. These are true “gauge transformations” generated by a
constraint H = 0. They do not change the physical state

2. B[N] 6= 0. These are not “gauge transformations”. They are generated
by a non-zero quantity and are a global symmetry with a conserved
Noether charge B. They do change the physical state: H|Ψ〉 6= 0.

3. If B[N] =∞ these are not symmetries of the system (although see
calculation of anomalies in AdS/CFT).
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Now, could you please stop talking and calculate this boundary term?

We shall do it explicitly for AdS3 described by the action

I [gµν ,matter] =
1

16πG

∫
d3x
√

g(R − 2Λ) + matter.

We consider this case because it is nice, simple and has a lot of structure
(Virasoro algebra, a central charge). Most importantly, the speaker had all
the equations at hand. The same can be done with minor modifications for
asymptotically flat spacetimes, and in any number of dimensions.

We need to compute integrals at infinity which look like,∫
r→∞

dΩrd−2niN jδgij (plus many others)

To determine whether this is zero or not, we need to know how fast/slow
the fields N,N i , δgij decay as r →∞.
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The Regge-Teitelboim algorithm is as follows: The “vacuum” solution to
three-dimensional gravity is AdS3 (Λ = −1)

ds2
(0) = −(1 + r 2)dt2 +

dr 2

1 + r 2
+ r 2dφ2

This is the relevant solution when there is no matter, no sources. This
vacuum state has 6 isometries

ξµ1 = [1, 0, 0], time translations

ξµ2 = [0, 0, 1], rotations

ξµ3 =

[
−r sin t cosφ√

1 + r 2
,
√

1 + r 2 cos t cosφ,

√
1 + r 2

r
sin t sinφ

]

ξµ4 =

[
−r sin t sinφ√

1 + r 2
,
√

1 + r 2 cos t sinφ,

√
1 + r 2

r
sin t sin cos

]
ξµ5 = ...

ξµ6 = ...
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We call this set of vectors ξµa , a=1,2..6. They all satisfy the Killing equation

Lξag (0)
µν = 0.

I They satisfy a Lie algebra:

[ξa, ξb]µ = f c
abξ

µ
c

I This algebra can be decompose into a direct product
SL(2,<)× SL(2,<).
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With matter the geometry deviates
from AdS3 in the bulk, but far away
we expect to get back to AdS3. The
question is how fast. For large r , the
source looks like a point with metric,

AdS3

AdS3

AdS3

AdS3

ds2 = −(−M + r 2)dt2 +
dr 2

−M + r 2 + J2

4r2

+ Jdtdϕ+ r 2dϕ2

This gives us some reasonable fall off behavior for the metric functions.

But we would like the
asymptotics to be AdS3

invariant. if we act with the 6
AdS3 Killing vectors ξµa on this
metric, we generate the
following asymptotic solution:

gtt ∼ r 2 + ftt(t, φ) + · · · ,
gtr ∼ 0 + ftr (t, φ)/r 3 + · · · ,
gtφ ∼ 0 + ftφ(t, φ)/r 3 + · · · ,
grr ∼ 1/r 2 + frr (t, φ)/r 4 + · · · ,
grφ ∼ 0 + frφ(t, φ)/r 3 + · · · ,
gφφ ∼ r 2 + fφφ(t, φ) + · · · ,

Max Bañados PUC-Chile Hamiltonian Formalism, Regge-Teitelboim charges and some AdS/CFT applications



Thus, at infinity, the metric behaves as

gtt ∼ r 2 + ftt(t, φ) + · · · ,
gtr ∼ 0 + ftr (t, φ)/r 3 + · · · ,
gtφ ∼ 0 + ftφ(t, φ)/r 3 + · · · ,
grr ∼ 1/r 2 + frr (t, φ)/r 4 + · · · ,
grφ ∼ 0 + frφ(t, φ)/r 3 + · · · ,
gφφ ∼ r 2 + fφφ(t, φ) + · · · ,

and the fluctuations,

δgtt ∼ ftt(t, φ) + · · · ,
δgtr ∼ ftr (t, φ)/r 3 + · · · ,
δgtφ ∼ ftφ(t, φ)/r 3 + · · · ,
δgrr ∼ frr (t, φ)/r 4 + · · · ,
δgrφ ∼ frφ(t, φ)/r 3 + · · · ,
δgφφ ∼ fφφ(t, φ) + · · · ,

The functions fµν(t, ϕ) are arbitrary. These conditions define the phase
space.

We thus have all the ingredients to compute the boundary term,

δB[N,N i ] =

∫
dSl

[
G ijkl(Nδgij ;k − N,kδgij) + 2Niδπ

il +(2N iπkl − N iπik)δgjk

]

Max Bañados PUC-Chile Hamiltonian Formalism, Regge-Teitelboim charges and some AdS/CFT applications



The interpretation:
The full generator of ‘gauge transformations’ (diffeomorphisms) is then

H[N,N i ] =

∫
d3x(NH+ N iHi )− B[N,N i ],

This object generates a diffeomorphisms with parameters N,N i (⇔ ξµ

entering in x ′µ = xµ + ξµ).

Black hole charges: Consider the black hole metric, which has specific
functions fµν .

Diffeomorphisms approaching a constant time translation at infinity:

N → 1, B[1, 0] = −M H = M Energy

Diffeomorphisms approaching a constant rotation translation at infinity:

Nφ → 1, B[0, 1] = −J Angular Momentum
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AdSd/CFTd−1

Symmetries, once again... One the strongest pieces of evidence for this
conjecture comes from the symmetries of both theories:

Isometries of AdSd . In d
dimensions find the vectors ξ
leaving the AdS metric
invariant:

Lξg
AdS

µν = 0

(anti-de Sitter group).

Go down one dimension and
find the conformal isometries
of flat space .

Lχηij = Ωηij

the vectors χ define the
conformal group.

It turns out that these algebras are the same. There is a one-to-one
correspondence between the vectors ξ and the vectors χ
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But in AdS3/CFT2 there seems to be a counterexample:

I The AdS3 Killing equation has six vectors, spanning the Lie algebra
SL(2,<)2

I On the other hand, the conformal Killing equation in 2-dimensions has
an infinite number of solutions! Take

ds2 = dzdz̄

The transformation z = f (z ′) and z̄ = f̄ (z̄ ′) yields

ds2 = |∂f |2dz ′dz̄ ′

which is the same metric, up to a conformal factor.
I The functions f and f̄ are arbitrary

f (z) = a0z + a1z2 + a3z3 + · · ·

each term is an independent transformation.

Where are the missing ‘isometries’ in AdS3?
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In 1986, Brown and Henneaux discover that AdS3 has a conformal
symmetry with a central charge. Now (Maldacena 1997) we understand this
symmetry as the first example of a deep relationship between anti-de Sitter
spaces and conformal field theories. Consider the conformal algebra

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n −m)L̄n+m +
c

12
n(n2 − 1)δn+m,0

The modes L0,±1, L̄0,±1 form a closed subalgebra,

[L1, L−1] = 2L0

[L±1, L0] = ±L±1

[L̄1, L̄−1] = 2L̄0

[L̄±1, L̄0] = ±L̄±1

This subalgebra, called SL(2,<)× SL(2,<), is exactly equivalent to the 6
Killing vectors ξµa of AdS3.

Could it be that our boundary conditions are invariant under a larger group
of transformations? Will these extra transformations have finite charges?

Max Bañados PUC-Chile Hamiltonian Formalism, Regge-Teitelboim charges and some AdS/CFT applications



We have considered the class of metrics such that for large r

gtt ∼ r 2 + ftt(t, φ) + · · · ,
gtr ∼ 0 + ftr (t, φ)/r 3 + · · · ,
gtφ ∼ 0 + ftφ(t, φ)/r 3 + · · · ,
grr ∼ 1/r 2 + frr (t, φ)/r 4 + · · · ,
grφ ∼ 0 + frφ(t, φ)/r 3 + · · · ,
gφφ ∼ r 2 + fφφ(t, φ) + · · · ,

These class of metrics are
AdS3 invariant in the sense
that any diffeomorphism
ξµ → ξµa leave them invariant.

We know ask the opposite question: Are there other change of coordinates
such that these conditions are invariant? Consider a vector

ξµ =

(
at(t, ϕ) +

bt(t, ϕ)

r 2
, ar (t, ϕ)r , aϕ(t, ϕ) +

bϕ(t, ϕ)

r 2

)
This vector is much more general than the Killing vectors ξµa . Act with these
vectors on the boundary conditions to obtain:
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We conclude that a much larger group of transformations leave the
boundary conditions invariant.

We shall now pass to a different coordinate system where the
Brown-Henneaux conditions can be solved in a simple way, and the
conformal symmetry exhibited in an explicit way.
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Chiral coordinates and Brown-Henneaux conformal symmetry.

ds2 = −
(
1 + r 2

)
dt2 +

dr 2

1 + r 2
+ r 2dϕ2

→ r 2(−dt2 + dϕ2) +
dr 2

r 2

= e2ρdzdz̄ + dρ2, [z = t + ϕ, z̄ = −t + ϕ, eρ = r ].

In these coordinates, the Brown-Henneaux boundary conditions read:

ds2 = e2ρdzdz̄ + dρ2 + T (z)dz2 + T̄ (z̄)dz̄2︸ ︷︷ ︸+ · · ·

where T (z) and T̄ (z̄) are arbitrary functions of their arguments.
Furthermore, the larger group that leaves these metrics invariant are
(pseudo) conformal transformations

z → f (z), z̄ → g(z̄).

acting non-trivially! In AdS/CFT language, T (z), T̄ (z̄) are vevs.
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A coordinate transformation with lots of interpretation. Chiral case (T̄ = 0).

ds2 = e2ρdzdz̄ + dρ2 + T (z)dz2/α

(incidentally, this ↑ is an exact solution. α =constant)

z = f (z ′) → = e2ρ∂′f dz ′dz̄ + dρ2 + T (z)(∂′f )2dz ′2/α

We can eliminate the Jacobian in the first term by doing

e2ρ∂′f = e2ρ′
, z̄ = z̄ ′ − 1

2
e−2ρ′ ∂′2f

∂′f
.

and go back to exactly metric we started from

ds2 = e2ρ′
dz ′dz̄ ′ + dρ′2 + T ′(z ′)dz ′2/α,

where –note the Schwarz derivative(!)–

T ′(z ′) = T (z)
(
∂′f
)2 − α

2
{f , z ′}.

This would be meaningless, if it wasn’t for the fact z = f (z ′) is not trivial!
The generator is non-zero, and equal to T (z).
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Finally, we compute the boundary term associated to conformal
transformations:

B[f (z)] = T (z)

The algebra of diffeomorphisms allow the calculation of [T ,T ] and fixes the
value of α such that T is energy-momentum. With the expansion in modes,

T (z) =
∑ Ln

zn+2

one finds the Virasoro algebra,

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

with

c =
3`

2G
.

G and ` are parameters appearing in the 3d action,

I =
1

16πG

∫ √
g

(
R − 2

`2

)
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I The asymptotic symmetry group of three dimensional gravity is not
SL(2,<)2 but the conformal group with a non-zero central charge.

I Now, AdS/CFT [Maldacena (1997)] suggests a stronger statement,

Gravity on AdS3 is dual to a CFT2

I Caution: AdS/CFT applies to the whole of string theory. But perhaps
AdS3/CFT2 represents an isolated self-consistent island? (Note
Chern-Simons formulation and WZW models)

I Note: Brown-Henneaux does not give information on the CFT theory,
only the symmetry. It is like knowing [Li , Lj ] = εijkLj but not ~L = ~r × ~p
(or any other).
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We would like to compute the black hole entropy by counting states in the
CFT.

I The back hole is asymptotically anti-de Sitter with

`MG = L0 + L̄0, JG = L0 − L̄0.

I We expect the CFT2 central charge to be the Brown-Henneaux one (up
to sub-leading quantum corrections).

I Now the magic comes from the power of Cardy formula. For any
unitary modular invariant 2d CFT, the number of states consistent with
given (large) L0, L̄0 is

ρ(T , T̄ ) = e2π
√

c
6
L0+2π

√
c
6
L̄0 .

I Plug the black hole values for L0, L̄0 and obtain exactly
Bekenstein-Hawking entropy [Strominger (1997)]

ρ(M, J) = e
2πr+

4G .

I Note the crucial role of the central charge c .
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Thank you
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